
Cross-Stack Workload Characterization of Deep
Recommendation Systems

Samuel Hsia1, Udit Gupta1,2, Mark Wilkening1,
Carole-Jean Wu2, Gu-Yeon Wei1, David Brooks1

1Harvard University 2Facebook Inc.

shsia@g.harvard.edu

Abstract—Deep learning based recommendation systems form
the backbone of most personalized cloud services. Though the
computer architecture community has recently started to take
notice of deep recommendation inference, the resulting solutions
have taken wildly different approaches – ranging from near
memory processing to at-scale optimizations. To better design
future hardware systems for deep recommendation inference, we
must first systematically examine and characterize the underlying
systems-level impact of design decisions across the different
levels of the execution stack. In this paper, we characterize
eight industry-representative deep recommendation models at
three different levels of the execution stack: algorithms and
software, systems platforms, and hardware microarchitectures.
Through this cross-stack characterization, we first show that
system deployment choices (i.e., CPUs or GPUs, batch size
granularity) can give us up to 15× speedup. To better understand
the bottlenecks for further optimization, we look at both software
operator usage breakdown and CPU frontend and backend
microarchitectural inefficiencies. Finally, we model the correla-
tion between key algorithmic model architecture features and
hardware bottlenecks, revealing the absence of a single dominant
algorithmic component behind each hardware bottleneck.

I. INTRODUCTION

Recommendation systems recommend items to users based
on the users’ personal preferences. E-commerce marketplaces
(e.g., Amazon, Alibaba) that recommend relevant goods for
purchase [1]–[3], social media platforms (e.g., Facebook,
Twitter) that regularly update user feeds with new multimedia
content [4], and entertainment services (e.g., Netflix, YouTube)
that promote new playlists [5], [6] all heavily rely on high-
accuracy recommendation systems to maintain quality of
service and positive user experience. To achieve the highest
possible recommendation accuracies, these recommendation
algorithms have evolved from using classical information
filtering techniques [7], [8] to state-of-the-art deep-learning
based solutions. Figure 1 depicts the general workflow of a
typical recommendation system in the context of the afore-
mentioned internet-based applications – these algorithms are
programmed using different deep learning frameworks and
executed on systems of different architectures.

While deep-learning solutions provide high quality recom-
mendations, they also require high infrastructure overheads
to run efficiently. For instance, Facebook’s recommendation

Fig. 1: Recommendation systems leverage information about a
user’s preferences to recommend new content. The three main
components include users, items, and the recommendation
system itself. This paper analyzes recommendation inference
at three different levels of the computing stack: algorithms and
software, systems platforms, and microarchitectures.

use cases require more than 10× the datacenter inference
capacity compared to computer vision and natural language
processing tasks [9]. As a result, over 80% of machine learning
inference cycles on Facebook’s datacenter fleet are devoted to
recommendation filtering and ranking [10]. The model training
process tells a similar story — over 50% of the training
demands are attributed to deep recommendation models [11].
Similar capacity demands can be found at other companies like
Google [12], Amazon [13], Alibaba [2], [3], and Baidu [14].

Given the importance of recommendation models, explor-
ing custom hardware solutions will be important for further
workload acceleration and infrastructure efficiency. Recent
work has demonstrated that some recommendation models
– given their large memory capacity requirements and ir-
regular memory access patterns – pose unique performance
bottlenecks compared to other deep learning based workloads
(e.g., CNNs and RNNs) [15]. Thus, existing proposals for
accelerating datacenter scale CNNs and RNNs do not directly
apply to recommendation models. By exploiting these unique



compute characteristics, researchers have demonstrated that
novel memory systems can provide significant speedup on
a specific class of recommendation models dominated by
table lookup operations [16]–[18]. However, there still exists
large algorithmic diversity across recommendation use cases
[15], [19], [20]. Because of this diversity, holistic architectural
bottleneck analysis – for both CPU microarchitecture and
heterogeneous hardware – will enable hardware customization
for improving recommendation inference efficiency.

In this paper, we perform a detailed workload characteri-
zation of recommendation inference at three different levels
of the execution stack: algorithms and software, systems
platforms, and hardware microarchitectures. First, we evaluate
the eight recommendation networks on a variety of server class
CPUs and AI accelerators (i.e., GPUs). This evaluation shows
the optimal system – between CPUs and GPUs and between
microarchitecture generations (i.e., Intel Broadwell versus
Cascade Lake and NVIDIA Pascal versus Turing) – varies
based on the model architectures and inference batch sizes. In
addition to heterogeneous system evaluation, we demonstrate
that Caffe2 software operator usage breakdowns – which
vary across model architectures, batch sizes, and underlying
hardware – expose performance bottlenecks and opportunities
for architectural optimizations. Finally, we perform a detailed
microarchitectural performance analysis on server class Intel
Broadwell and Cascade Lake CPUs using TopDown [21]. Our
microarchitectural analysis reveals that recommendation infer-
ence suffers from a variety of microarchitecture inefficiencies
related to frontend decoders, backend functional units and
memory systems, and branch speculation.

The main contributions of this paper are:
1) While conventional wisdom and recent research indicates

that AI accelerators, such as GPUs, readily accelerate
deep learning workloads, this work shows the optimal
hardware system (i.e., CPU versus GPU) varies based on
recommendation use cases (Section IV).

2) In addition to overall execution times, we analyze soft-
ware operator usage at the algorithm level. Previous work
classifies recommendation models based on their operator
breakdowns at fixed use cases on CPUs. In contrast, our
analysis shows that varying the model architecture, batch-
size, and hardware platform can alter the target operators
for future hardware optimization (Section V).

3) Based on the detailed TopDown results from a server
class Intel Broadwell CPU, we see that pipeline bottle-
necks vary based on model architecture features. FC-
intensive models (i.e., RM3, WnD, MT-WnD) suffer
from insufficient functional units; embedding-intensive
models (i.e., RM1, RM2) suffer from ineffective frontend
decoders; attention-based models (i.e., DIN, DIEN) suffer
from instruction cache misses (Section VI).

4) We compare the microarchitectural performance charac-
teristics of Broadwell and Cascade Lake CPUs. The Cas-
cade Lake microarchitecture improves recommendation
inference performance across all use cases with its wider
Single Instruction Multiple Data (SIMD) execution units

Fig. 2: Evolution of Recommendation Systems. Traditional
collaborative filtering (top) models user preferences as two
(user and item) embedding tables and inner product between
table entries. Deep learning based methods (bottom) still
leverage embedding tables – though the number of tables,
number of lookups per table, latent dimension, and subsequent
matrix operations (gray blocks) are all highly configurable.

and enhanced speculation capabilities. With these opti-
mizations, the performance bottleneck on Cascade Lake
shifts to the backend memory subsystem (Section VI).

II. RECOMMENDATION BACKGROUND

Recommendation is the task of suggesting new content to
users based on their preferences and prior content interactions.
Recommendation is used in many popular internet services
(e.g., search, entertainment streaming, e-commerce) to im-
prove user experience by enabling personalization. The main
challenge for recommendation systems is accurately modeling
users’ preferences based on sparse training data — users
often explore only a tiny fraction of all available items. This
section explores how recommendation systems have evolved
over time. More specifically, we discuss the semantics of clas-
sical recommendation approaches and important algorithmic
components of state-of-the-art deep learning methods.

A. Classical Recommendation Systems

Classical recommendation systems are generally catego-
rized as either content-based filtering or collaborative filtering.
Content-based filtering recommends content based on a user’s
personal preferences and item interaction history while col-
laborative filtering exploits preference similarity across users.
Content-based filtering models each user as feature vector
ui ∈ Rk and each item as feature vector vj ∈ Rk, where
k is the number of learned features (i.e., latent dimension) for
each user and item.

Collaborative filtering represents historical interactions be-
tween N users and M items as a partially-observed matrix
R ∈ RN×M , where rij is the historical interaction between
user i and item j. To compensate for unobserved entries, col-
laborative filtering approximates R with matrix factorization



Model Application Domain (Evaluation) Unique Requirement/Use Case Model Architecture Insight

NCF Movies
(MovieLens)

Small amount of required training data
(see # of embedding tables) Small model with only four embedding tables

RM1 Social Media
(Facebook) Early stage filtering (i.e., low run-time requirements) Small model with medium amount (80)

of lookups per embedding table

RM2 Social Media
(Facebook)

Late stage ranking (i.e., high accuracy requirements)
targeting categorical features

Large model with large amount (120)
of lookups per embedding table

RM3 Social Media
(Facebook)

Late stage ranking (i.e., high accuracy requirements)
targeting continuous features

Large model with large FC stacks
and immediate continuous input processing

WnD Smartphone Applications
(Google Play Store)

Generic large-scale regression and classification problems
with categorical features Medium model with large FC stacks

MT-WnD Video
(YouTube) Evaluation of multiple objectives (e.g., likes, ratings) Large model with multiple parallel FC stacks

on top of WnD

DIN E-Commerce
(Alibaba)

Model evolving user preferences
(i.e., time-series nature of dataset)

Large model with local activation weights
for large amount (750) of lookups

from user behavior embedding tables

DIEN E-Commerce
(Alibaba - Taobao)

Model evolving user preferences
(i.e., time-series nature of dataset)

Medium model with interaction GRUs
to replace large amount of lookups found in DIN

TABLE I: Summary of eight industry-representative recommendation models and their important architectural insights.

(MF) as a user matrix U ∈ RN×k and item matrix V ∈ RM×k,
where k is again the latent dimension:

R ≈ R̂ ≡ UV T (1)

As shown in Figure 2 (top), to predict the interaction score
of user i with item j (rij) we would have to find the inner
product of the ith row of U and the jth row of V :

rij ≈ r̂ij ≡ ui
Tvj (2)

B. Deep Recommendation Systems

In order to leverage the abundance of user data and model
complex user-item interactions, recommendation systems have
shifted from the aforementioned techniques, e.g., [7], [8],
to deep-learning based approaches [19]. Figure 2 (bottom)
shows the general deep-learning based model architecture; the
embedding tables and components shaded in gray (i.e., DNN-
stacks and pooling/interaction layers) are highly configurable:
• Embedding Tables. Deep recommendation systems rely

on embedding tables (Figure 2, red and blue outline) to
encode information about users and items. Every input
sample has categorical components (e.g., movies a user
likes) – represented as multi-hot encoded vectors – that are
processed as table lookups. Embedding tables are configured
based on the number of lookups, number of entries per
table, number of tables, and latent dimension of embedding
vectors. As table sizes increase (∼GBs), access patterns
become increasingly sparse – leading to irregular memory
accesses that make system optimizations challenging.

• DNN Stacks. In addition to categorical features, input sam-
ples also include continuous features (e.g., user age) that are
processed directly by DNN stacks. DNN stacks range from
vanilla fully-connected (FC) layers to more complicated
architectures (e.g., autoencoders, CNNs, RNNs).

• Feature Interaction Layers. To unify outputs from embed-
ding table lookups and DNN stacks, deep recommendation
systems have feature interaction layers that range from
simple concatenation to attention mechanisms.

III. METHODOLOGY

Machines Xeon E5-2697A Xeon Gold 6242 GTX 1080 Ti T4
Microarchitecture Broadwell Cascade Lake Pascal Turing

Frequency 2.6 GHz 2.8 GHz 1.48 GHz 0.58 GHz
Cores (SM Count) 16 16 (28) (40)

SIMD
(CUDA Capability) AVX-2 AVX-512 (6.1) (7.5)

L1 Cache Size 32 KB 32 KB 48 KB 64 KB
L2 Cache Size 256 KB 1 MB 2.75 MB 4 MB
L3 Cache Size 40 MB 22 MB N/A N/A
L2/L3 (L1/L2)

Cache Inclusion Policy Inclusive Exclusive (Inclusive) (Inclusive)

DRAM Capacity 256 GB 384 GB 11 GB 16 GB
DDR Type DDR4 DDR4 GDDR5X GDDR6

DDR Frequency 2400 MHz 2933 MHz 1376 MHz 1250 MHz
DDR Bandwidth 77 GB/s 131 GB/s 484.4 GB/s 320 GB/s

TDP 145 W 150 W 250 W 70 W

TABLE II: Summary of hardware platforms studied.

Personalized recommendation systems run a diverse col-
lection of state-of-the-art deep-learning models across het-
erogeneous datacenter hardware. To understand the impact
of algorithmic model diversity on inference performance, we
characterize eight industry-representative, publicly-available
recommendation models. The model implementations are from
the open-sourced DeepRecSys repository and are also not
pre-trained as this study focuses solely on inference compute
requirements [15]. We characterize the recommendation model
performance on server class CPUs (i.e., Intel Broadwell and
Cascade Lake) and GPU-based AI accelerators (i.e., NVIDIA
1080 Ti and T4). This section describes the models and system
platforms used in this work.

A. Deep Recommendation Models

Figure 2 (bottom) provides a generalization of deep rec-
ommendation model architectures. Building on the general
model architecture, our characterization studies eight industry-
representative deep recommendation models with unique net-
work parameters, as shown in Table I [15].
1) Neural Collaborative Filtering (NCF) extends matrix

factorization with multi-layer perceptrons (MLPs) and non-
linearities:

rij ≈ r̂ij ≡ φ(wT (ui ◦ vj)) (3)

where φ and w are the activation function and weights re-
spectively. Although NCF has only four embedding tables,
it has shown success with the MovieLens dataset [5].



Fig. 3: Systems performance evaluation represented as speedup over Broadwell CPU across models, batch-sizes, and hardware
platforms. Models are grouped into three primary, overlapping categories – ones that perform well on GPUs, ones that have
comparable performance on CPUs and GPUs, and attention-based models with varying implementations.

2) Deep Learning Recommendation Model (DLRM RM1,
RM2, RM3) is a highly configurable model with multi-
hot encoded embedding lookups. Outputs of embedding
lookups are aggregated with the output of DNN stacks
that process continuous input features. We configure three
representative DLRM networks – RM1, RM2, RM3 – with
varying ratios of FC weights and embedding lookups based
on Facebook’s social media ranking models [4], [15], [22].

3) Wide and Deep (WnD) captures both the memoriza-
tion and generalization benefits by concatenating outputs
of one-hot encoded embedding lookups with continuous
inputs. The resulting features are then processed with
deep feed-forward networks. WnD has been used to rank
applications in Google’s Play Store [23].

4) Multi-Task Wide and Deep (MT-WnD) expands upon
WnD by adding parallel output FC layers on top of WnD
to evaluate multiple objectives. While the other models
predict a single engagement objective such as click-through
rate (CTR), MT-WnD evaluates multiple objectives such
as likes and ratings. MT-WnD provides high quality next
video recommendations on YouTube [6].

5) Deep Interest Network (DIN) addresses evolving user
preferences by implementing the attention mechanism with
local activation units for embedding table lookups. User
embedding tables process a small number of lookups while
item embedding tables process hundreds of lookups. DIN
has been deployed to great success by Alibaba in its online
marketplace for display advertising [2].

6) Deep Interest Evolution Network (DIEN) also addresses
evolving user preferences but uses multi-layered gated
recurrent units (GRUs) to explicitly separate user prefer-
ences from user interaction history. For item embedding
tables, this leads to fewer lookups per table as more of the

information processing is offloaded to the GRU layers. Like
DIN, DIEN has been deployed successfully by Alibaba on
its display advertising services (specifically on Taobao) [3].

B. Systems Platforms

State-of-the-art recommendation models are deployed
across heterogeneous hardware systems in datacenters. In fact,
exploiting hardware heterogeneity to schedule inferences on
optimum platforms based on use cases (i.e., model architec-
ture, inference batch-size) significantly improves recommen-
dation performance [15]. This work mimics this hardware
heterogeneity by providing in-depth characterizations on two
server class CPUs (i.e., Intel Broadwell and Cascade Lake)
and two GPUs (i.e., NVIDIA GTX 1080 Ti and T4). Table II
summarizes the key architectural features of the platforms.
GPUs are connected to CPUs via PCIe 3.0. All results assume
single-threaded inference in Caffe2, and include both data
loading and model computation times to capture end-to-end
recommendation inference.

IV. SYSTEMS PLATFORMS EVALUATION

This section describes the performance characteristics
of the eight recommendation models at different use cases
(i.e., input batch sizes and systems platforms). The range of
batch sizes follows recent work that shows recommendation
in datacenters runs with batch sizes from tens to thousands to
meet different SLA targets [15]; the range of systems platforms
exposes the effects of different generations of CPUs and GPUs.
In the context of GPUs, we find that data-communication
overheads limit GPU performance. Overall, the analysis shows
that the optimum hardware for recommendation inference
depends on both model architecture and batch size.

Figure 3 depicts the speedups of the Cascade Lake CPU,
GTX 1080 Ti GPU, and T4 GPU over a baseline Broadwell



Fig. 4: GPU data communication overheads as percent of total execution time. While parts of this overhead can be attributed
to software implementation overhead, the majority is due to GPU data loading (i.e., CPU-GPU communication overheads).

CPU server. The results are organized by recommendation
model, across batch-sizes 1 to 16384, and consider end-
to-end execution times (i.e., model-computation plus data-
communication). The important observations are:

1) Model architecture plays an important role in acceler-
ating recommendation inference. Models in the bottom row
of Figure 3 exhibit high speedup on the NVIDIA 1080 Ti and
T4 GPUs. For larger batch sizes (∼ 103), the GPUs provide
an order of magnitude speedup over the baseline Broadwell
CPU; for smaller batch sizes (< 102), we observe a 2 − 4×
speedup. The relatively high speedups observed come from
the models (i.e., NCF, RM3, WND, MT-WND, RM3) sharing
an important algorithmic characteristic (Table I): whether it is
fewer embedding tables in NCF, large FC stacks for continuous
inputs in RM3, or large FC stacks to output final probability
scores in WnD and MT-WnD, each of these models relies
on FC stacks to model user preferences. As GPUs readily
accelerate matrix operations, they outperform CPUs on NCF,
RM3, WND, and MT-WND.

Compared to the models with large FC components, RM1
and RM2 exhibit relatively lower speedups – less than 4× –
when deployed on GPUs (Figure 3 top left). In fact, at small
batch sizes, Cascade Lake consistently outperforms the 1080
Ti GPU (and by at least 2× at small batch sizes) and offers
speedups within 10% of the T4. This is a result of RM1 and
RM2 having a large number of lookups per embedding table –
80 and 120 lookups respectively. In comparison, the remaining
models have fewer than 20 lookups per table. The larfe number
of lookups shifts the performance bottleneck towards embed-
ding operations that comprise of irregular memory accesses
(see Section V for details). Depending on the input batch-
size, CPUs and GPUs perform comparably on these models
dominated by irregular memory accesses.

2) Different model architecture implementations of an
algorithmic feature like the attention mechanism can have
different hardware implications. Algorithmically, both DIN
and DIEN use attention to learn users’ evolving interests over
time. DIN implements attention with local activation units
and small FC layers followed by concatenation operations for
aggregation while DIEN implements attention using multi-

Fig. 5: Optimal hardware for each model architecture and
batch size: each grid cell show the speedup over Broadwell
when using the optimum hardware (color).

layered gated-recurrent units (GRUs). For DIN, Broadwell
machines outperform GPUs at batch-sizes less than 100. At
larger batch-sizes, GPU speedup saturates below 4×. The
lower speedups are a direct result of DIN implementing
attention with heavy concatenation operations that perform
poorly on GPUs. In comparison, DIEN achieves up to 7×
speedup on GPUs compared to Broadwell, as GRUs translate
to matrix multiplications that perform well on GPUs.

3) Compared to Broadwell, Cascade Lake improves
performance across all models and batch sizes. Across
all use cases, encompassing models and batch-sizes, Cascade
Lake achieves higher performance than Broadwell CPUs.
Following Table II, the improved performance is a result of
various micro-architectural features such as wider SIMD width
for FC-focused models, larger L2 cache capacity, and higher
DRAM frequency. Section VI details the micro-architectural
features that enable higher performance on Cascade Lake.

4) Compared to GTX 1080 Ti, T4 improves performance
for specific models and batch-sizes. For NCF, RM3, WnD,
MT-WnD, and DIEN, T4 outperforms the 1080 Ti at batch
sizes larger than ∼ 103, offering higher speedups due to higher
streaming multiprocessor (SM) count. However, for RM1 and
RM2, T4 becomes advantageous at smaller batch sizes – due
to the increase in GDDR5X to GDDR6 frequency. This is



Fig. 6: Caffe2 operator breakdowns with CPUs (left) and GPUs (right). Models readily accelerated by GPUs are dominated
by matrix operations (i.e., FC in red and recurrent layers in purple). Operator breakdowns between CPUs and GPUs vary
significantly — models dominated by FC execution time on CPUs spend a large fraction of time on other operators on GPUs.

Fig. 7: Comparison of Caffe2 and TensorFlow operator
breakdowns for DLRM-based recommendation models. Op-
erators that comprise the majority of execution time are similar
across both frameworks. Note, embedding table operations
correspond to SparseLengthsSum in Caffe2 and the com-
bination of ResourceGather and Sum in TensorFlow.

important as for latency-critical applications with strict SLA
targets, input samples must run at small batch sizes.

5) GPU speedup over CPU is limited by data commu-
nication overheads. Figure 4 quantifies the fraction of time
spent on data communication for different models and batch
sizes. Data communication overheads come from offloading
both continuous and categorical inputs via PCIe. For all mod-
els, the fraction of time spent on data communication scales
with batch size as compute operations are readily accelerated
(sub-linear) but data communication is not. Exact percentage
of time spent on data-communication still depends on the
model architecture; models that rely on embedding lookups
suffer most. Given the high data-communication overheads,
we conclude that running recommendation models out of the
box on GPUs underutilizes the GPUs’ compute resources.

Figure 5 summarizes the results of Section IV by showing
how the optimal system platform (color coded) and speedup
(number inside cell) vary across the use cases (models across
the rows and batch sizes across the columns). While this
section provides a high level intuition on the tradeoffs between
CPUs and GPUs, the following sections dive deeper into the
heterogeneity behind Figure 5.

V. ALGORITHMS AND SOFTWARE CHARACTERIZATION

To better understand the system performance trends, in
this section, we provide an algorithmic characterization of
the different models and use cases. More specifically, we
breakdown Caffe2 operators’ usage for inference across the
eight models and batch sizes. Furthermore, we show that
the algorithmic bottlenecks are consistent across deep-learning
frameworks (i.e., Caffe2 and Tensorflow), demonstrating that
the performance trends are fundamental to model architectures.

A. Operator Breakdown
Operator usage breakdowns allow us to quantify the im-

portance of each operator and compare them across model
architectures in a unified manner. This is extremely important
as model architectures for deep recommendation systems are
rapidly evolving. In fact, these model architectures often
mirror recent advances in deep learning [19]. Figure 6 shows
the operator breakdown of the eight models – implemented
in Caffe2 – across four different batch sizes on Broadwell,
Cascade Lake, GTX 1080 Ti, and T4 machines. We see that
different generations of hardware (top versus bottom rows) and
classes of hardware (left versus right columns) alter operator
usage breakdown. The important observations are:

1) GPUs accelerate models dominated by FC oper-
ators on CPUs but struggle with those bottlenecked
by SparseLengthsSum on CPUs. Since GPUs contain
large arrays of SMs that execute matrix multiplication effi-
ciently, models with FC-dominated runtimes show the most
acceleration (see: NCF, RM3, WnD, and MT-WnD). On the
other hand, models with CPU runtimes bottlenecked by the
SparseLengthsSum operator do not perform as well on
GPUs. The SparseLengthsSum operator itself consists of
both looking up a specified number of embedding vectors from
each table and a subsequent partial sum. This becomes an issue
for GPUs when the number of lookups per table and the table
counts increase, leading to irregular memory access patterns.

2) In addition to the impact of varying model architec-
ture, batching inference requests across different hardware



Fig. 8: TopDown pipeline slot breakdowns. (Top) On
Broadwell, models that rely on matrix operations (i.e., NCF,
RM3, WnD, MT-WnD), fill most of their pipeline slots with
retiring instructions; the remaining models are either frontend
bound or backend bound. (Bottom) On Cascade Lake, models
with large FC components (i.e., RM3, WnD, MT-WnD) have
fewer retiring pipeline slots due to wider SIMD width. The
remaining models exhibit an increase in retiring mainly due
to a reduction in bad speculation pipeline slots.

platforms uncovers additional opportunities for hardware
optimization. Previous work has categorized recommendation
models into three types: MLP-, Embedding-, or Attention-
dominated models based on using a Broadwell CPU at a fixed
batch size of 64 [15]. While this offers an efficient grouping
for high-level discussions, analyzing operator breakdowns
across all possible use cases reveals even more optimiza-
tion points for designing future hardware. For example, on
RM1, varying batch sizes from 4 to 64 will shift the domi-
nant operator bottleneck from FC to SparseLengthsSum.
Classifying the recommendation models based on their GPU
performance also leads to different conclusions. For example,
WnD, an FC-heavy model on CPUs, is dominated by the
SparseLengthsSum operator at small batch sizes on GPUs.
Identifying these shifting bottlenecks is important in order
to thoroughly explore optimization opportunities. Designing
efficient hardware that specializes for low-latency targets (i.e.,
smaller batch sizes), high-throughput (i.e., larger batch sizes),
or other specific cases will require revisiting the operator
breakdowns at target use cases.

3) Different generations of the same platform type (i.e.,
CPU/GPU) affect exact operator usages but retain general
trends. On the left subplots of Figure 6 are Broadwell and
Cascade Lake breakdowns and on the right are GTX 1080
Ti and T4 breakdowns. Inter-generation microarchitectural
changes (i.e. Broadwell to Cascade Lake) affect operator
breakdowns (e.g., for RM1 and RM2, time spent on FC
layers is reduced) – Section VI goes more in depth on how

Fig. 9: Instruction vectorization. (Left) Broadwell AVX
instructions constitute over 60% of retired instructions for
models with larger FC layers (i.e., RM3, WnD, MT-WnD).
(Right) Cascade Lake’s wider SIMD-width results in shorter
execution time despite reduced AVX instruction footprint.

microarchitectural differences lead to this.

B. Effects of Different Deep Learning Frameworks

Figure 7 compares operator breakdowns between Caffe2
and TensorFlow for DLRM-based models. As the opera-
tor breakdowns are similar, we know the optimization tar-
gets will be, to first order, the same regardless of differ-
ences in software frameworks. The mapping of the oper-
ator responsible for FC stacks is straightforward: FC in
Caffe2 maps to FusedMatMul in TensorFlow. However,
the SparseLengthsSum operator in Caffe2 maps to the
combination of ResourceGather (lookup) and Sum (pool)
operators in TensorFlow.

VI. CPU MICROARCHITECTURAL CHARACTERIZATION

Complementing the operator breakdowns, in this section
we present a detailed CPU microarchitectural characterization
that provides additional insights into the performance trends
for recommendation inference. In order to better understand
the architectural bottlenecks in general purpose processors, we
use TopDown-based performance measurement unit (PMU)
analysis for server-class Broadwell and Cascade Lake CPUs
(Table II) [21]. This analysis shows the important microarchi-
tectural components that form the performance bottlenecks for
different recommendation models on Broadwell and how the
bottlenecks change for Cascade Lake CPUs.

A. TopDown analysis

Following TopDown performance analysis [21], we break
down the CPU pipeline into four major portions: fron-
tend, speculation, backend, and retiring. The frontend fetches
instructions from memory and converts them into micro-
operations (µops); speculation realizes predictive optimiza-
tions; backend schedules and executes the µops; retiring
commits the µops. In order to optimize the performance of
a processor we must maximize instructions per cycle (IPC).
Generally, IPC can be improved by increasing the fraction of
processor cycles devoted to retiring as opposed to stalled in the
frontend, speculation, or backend portions. Recent work uses
TopDown analysis to better understand the fraction of cycles in



Fig. 10: (Top) Ratio of Core:Memory Backend Bound
cycles. Majority of stalls come from functional units on
Broadwell and from memory subsystem on Cascade Lake.
(Bottom) Functional unit usage. RM3, WnD, and MT-WnD
saturate Broadwell’s functional units more than other models
with a large fraction of cycles that use 3+ units out of 8.
Cascade Lake decreases the pressure on functional units.

each pipeline portion for server and datacenter workloads [21],
[24], [25].

B. Recommendation performance using TopDown

Figure 8 shows the TopDown breakdown of the eight
deep recommendation models, with a batch-size of 16, on
Broadwell and Cascade Lake CPUs. Generally, on Broadwell,
models with larger FC layers (i.e., RM3, WnD, and MT-WND)
spend the majority of their cycles in retiring. On the other
hand, the remaining models (i.e., NCF, RM1, RM2, DIN, and
DIEN) suffer from a variety of frontend, backend, and bad
speculation bottlenecks. Following are notable observations:

1) On Broadwell, larger FC-dominated models benefit
from vector execution but remain limited with insufficient
functional units. On Broadwell, models that rely on FC layers
(i.e., NCF, RM3, WnD, MT-WND) spend a large percentage
of pipeline slots on retiring instructions. Thus, the natural
next step would be to investigate the degree of instruction
vectorization for these models (Figure 9). On Broadwell, over
60% of all retired instructions for RM3, WnD, and MT-WnD
are Advanced Vector Instructions (AVX) (Figure 9 (Left)).
This is a result of machine learning frameworks, like Caffe2,
translating FC layers to vectorized matrix operations.

Despite this high degree of vectorization, the larger FC-
dominant models still spend a significant fraction of pipeline
slots backend bound – highlighting the need for improved
CPU backend pipelines for faster µops consumption. Backend
bound cycles can be further classified as either core bound
or memory bound. Figure 10 (Left) quantifies the core-bound
nature of these backend-bound models on a Broadwell ma-
chine in two ways. The top row shows the breakdown of the
backend bound slots as a core:memory bound ratio, where
RM3, WnD, and MT-WnD all show numbers > 1. In the
case of RM3, where the ratio ∼ 2, there are twice as many

Fig. 11: Retired Instructions Count decreases from Broad-
well to Cascade Lake due to the introduction of the more
efficient AVX-512 VNNI instructions.

functional units-induced stall cycles as memory subsystem-
induced stall cycles. We see that for WnD and MT-WnD, this
ratio is > 1.5. Thus, despite wide vector execution, larger FC-
dominant models remain backend core-bound on Broadwell
machines.

Figure 10 (Bottom) details the cycle-level utilization of
functional units. Recall that Broadwell CPUs have eight func-
tional units: four arithmetic units, two load units, and two store
units. Figure 10 (left, bottom) shows nearly 50% of cycles in
RM3, WnD, and MT-WnD require more than three functional
units: this high functional unit utilization underscores the core-
bound bottleneck. This illustration of the core-bound bottle-
neck also corroborates the source of GPU speedups for RM3,
WnD, and MT-WnD. Since these models are bottlenecked by
the lack of more functional units, the increase in the amount of
compute units (streaming multiprocessors) on GPUs alleviates
this core bound issue on Broadwell.

2) On Cascade Lake, larger FC-dominated models
benefit from wider SIMD width and compute capabilities,
shifting the bottleneck to the memory subsystem.

Figure 8 (bottom) shows the TopDown analysis of the
eight recommendation models on Cascade Lake CPUs. In
comparison to Broadwell, Cascade Lake enables the majority
of models (e.g., NCF, RM1, RM2, DIN, DIEN) to have a
larger fraction of retiring pipeline slots. This larger fraction
of cycles spent on retiring instruction is the main reason why
Cascade Lake provides consistent speedup over Broadwell (see
Figure 3). Note that the fraction of cycles devoted to the
retiring stage did not increase between Broadwell to Cascade
Lake for RM3, WnD, and MT-WnD. The slight decrease in the
retiring cycles is due to fewer total dynamic instructions, as
shown in Figure 11; overall, the wider width AVX-512 Vector
Neural Network Instructions (VNNI) improves performance
for larger FC-dominated models.

Recall that RM3, WnD, and MT-WnD are core bound on
Broadwell. Figure 10 (right) shows the backend TopDown
analysis on Cascade Lake. Given the wider AVX512-VNNI
instructions, Cascade Lake implements more sophisticated
fused multiply-add hardware, which increases the compute
capability of the processor. The increased compute capability
reduces pressure on the functional units as shown in Figure 10
(bottom, right). Despite the reduced execution port utilization,



Fig. 12: NCF and attention-based models suffer from in-
struction cache misses. NCF’s small size shifts the bottleneck
from execution units to i-cache. Attention-based models scale
each embedding vector (from irregular memory accesses) with
individual weights, leading to high i-cache MPKI.

inference performance for RM3, WnD, and MT-WnD remains
backend bound on Cascade Lake. As shown in Figure 10
(upper, right), the backend bottleneck has shifted from being
core-bound to memory bound. The particular memory sub-
system limiting performance depends on the input batch size
– smaller batch sizes (i.e., less than 100) are limited by L3
cache accesses while, larger batch-sizes are limited by DRAM
latency.

3) Smaller FC-dominant models and attention-based
models suffer from frontend latency – especially L1 in-
struction cache latency. Not all FC-dominant models are
core-bound. For example, on Broadwell, NCF suffers from
frontend latency bottlenecks and in particular, L1 instruction
cache latency. Because of its relatively small FC layers, NCF
does not exhibit core-bound levels of high compute intensity.

To understand these frontend limitations, Figure 12 quan-
tifies the L1 instruction cache miss rate. NCF, along with
attention-based models like DIN and DIEN, have higher
L1 instruction cache miss rates compared to the remaining
models. For instance, we measure a L1 instruction misses
per thousand instructions (i-MPKI) of 12.4 and 7.7 for DIN
and DIEN, respectively. The high instruction cache miss rates
are tied to how DIN and DIEN implement attention. Recall
that for recommendation systems, attention allows networks
to individually weight the importance of embedding vectors to
offer higher personalization. In DIN, attention is implemented
using hundreds of local concatenation and FC layers; this
leads to a large number of instructions with unique reference
locations (since the instruction cache does not cache opcodes
but specific instructions, including the reference operand).
Given the unique memory addresses for embedding table
lookups, the instruction cache hit rate suffers from irregular
memory accesses (i.e., lack of spatial and temporal locality).
DIEN’s GRU implementation more efficiently translates to
matrix operations compared to DIN’s implementation with
local concatenation-FC per lookup. This offers cache friendly
loops with regular operand and reference locations.

4) Models with more embedding table lookups suffer
from instruction decoder bottlenecks. As the degree of
embedding table lookups increases, the performance bot-

Fig. 13: Frontend Decoder Pipeline Inefficiencies. The two
main decoder microarchitecture components are DSB and
MITE. Shown are percent of cycles in which the CPU was
limited by a specific decoder component (i.e., component
was not supplying IDQ with optimal number of decoded
instructions).

Fig. 14: RM2 also suffers from DRAM Bandwidth Con-
gestion from the large number of embedding lookups.

tleneck shifts from pure decoder issues to also include
DRAM bandwidth limitations. On Broadwell, RM1 and
RM2 are frontend bandwidth-bound deep recommendation
models. Generally, this denotes inefficiencies in the instruction
decode phase as opposed to in the instruction fetch phase.
Figure 13 illustrates the fraction of cycles spent on two
parts of Broadwell’s frontend decoder pipeline, the decoded
i-cache (Decoded Stream Buffer - DSB) and the legacy de-
coder pipeline (Micro-Instruction Translation Engine - MITE).
MITE is responsible for fetching instructions from instruction
memory and decoding them into µops while the DSB caches
results from MITE. For each target instruction, DSB is first
queried. If the instruction is found in the DSB, the correspond-
ing µops are directly delivered to the instruction decode queue
(IDQ). If the instruction is not found, MITE is used to fetch
and decode instructions and the result is added into DSB.

Figure 13 (bottom) shows Broadwell’s decoder pipeline



Fig. 15: Branch Mispredicts decrease significantly when we
transition from Broadwell to Cascade Lake machines.

– including DSB and MITE. CPU cycles are analyzed to
determine if either DSB or MITE could not supply IDQ
with sufficient µops. For both RM1 and RM2, the frontend
bandwidth bound models, TopDown analysis illustrates the
bottlenecks in DSB as the main source of inefficiency.

The DSB bottleneck can be tied to algorithmic, model-
architecture features of RM1 and RM2. In particular, both
models require a high degree, tens to hundreds, of embedding
table lookups. Combined with the irregular memory accesses
coming from embedding lookups, larger instruction footprints
stress the DSB. Furthermore, RM1 and RM2 spend a large
fraction of their cycles on bad speculation as shown in
Figure 8. Since DSB is also affected by the Branch Prediction
Unit (BPU), the large amount of branch misprediction latency
will degrade the performance of DSB, as the speculation stalls
are primarily from branch mispredictions.

Despite the similarities between RM1 and RM2, RM2
has a unique performance bottleneck. As shown in Table I,
RM2 comprises more embedding tables (32 versus 8 in
RM1) and more lookups per table (120 versus 80 in RM1).
Given the larger size, RM2 suffers from bottlenecks in both
the frontend and backend pipeline. Figure 14 illustrates the
DRAM bandwidth congestion of RM1, RM2, DIN, and DIEN.
DRAM bandwidth congestion, as defined by Intel, occurs
when the offcore read queue occupancy exceeds 70% of
the maximum number of requests that can be served by the
memory controller simultaneously; whereas when below 70%
occupancy, the stall can be characterized as DRAM latency
bound [26]. We find that RM2 suffers from significantly higher
DRAM bandwidth congestion limitations compared to the
other models. Previous work exploit this property to design
near memory processing solutions for DRAM bandwidth-
bound recommendation models [16], [17].

5) Cascade Lake significantly reduces the amount of
pipeline slots lost to bad speculation. One of the marked
differences between the TopDown breakdowns of Broadwell
and Cascade Lake in Figure 8 is the decrease in pipeline slots
lost to bad speculation in Cascade Lake. While the specific
detail of the branch predictor designs used in Broadwell and
Cascade Lake are not available, the transition from Broadwell
to Skylake sees a penalty reduction for incorrect direct jump
target [27]. This overall improvement shifts the Cascade Lake
backend bottlenecks to the memory subsystems as discussed
in Observation #2.

Fig. 16: Linear Regression modeling of algorithmic model
architecture components and pipeline bottlenecks reveals that
there is not a single deciding factor for each bottleneck.

C. Tying Model Architectures to Pipeline Bottlenecks

To tie our microarchitectural observations to the specifics of
recommendation model architectures, we quantify the effects
of select algorithmic model architecture features with a linear
regression model.

Figure 16 summarizes our linear regression modeling; all
input features have been normalized so the weight magnitude
represents degree of impact. Data points are collected from
running the 8 models at batch sizes from 1 to 16384. The
model shows that each pipeline bottleneck is a result of
a combination of different algorithmic model architecture
features. For example, this model shows that a high ratio of
FC to embedding weights reduces bad speculation while a
top-heavy distribution of FC weights leads to increases in bad
speculation. The first point explains the intuition that compute-
intensive models have more predictable branches while the
second point shows that more direct processing of continuous
inputs is correlated with less bad speculation.

VII. RELATED WORK

Analysis and optimizations for recommendation sys-
tems. Recommendation systems have recently come under
the spotlight for computer systems researchers. As mentioned
earlier, a few recent works explore near-memory processing
techniques for recommendation models dominated by table
lookup operations. TensorDimm evaluates near-data process-
ing enabled custom DIMM modules on recommendation mod-
els similar to RM1-3 [16]; RecNMP evaluates a set of tech-
niques centered around memory-side caching on production-
representative embedding traces [17]. Ginart et al. and Shi et
al. [28], [29] compresses embedding tables in recommendation
models while maintaining the model accuracy. Centaur extends
near-memory processing designs to also account for the MLP
layers through a chiplet-based accelerator design [18]. Other
works have explored at-scale optimizations [10]: DeepRecSys
explores different optimizations at the datacenter scale; the
recommendation suite evaluated throughout this paper is from
DeepRecSys’s open sourced implementations [15]. Other work
has started to explore implications of training [11], [30].
In contrast, this paper focuses on purely characterizing the



recommendation suite introduced in [15]. To the best of
our knowledge, this is the first detailed microarchitectural
characterization of deep recommendation systems.

DNN benchmarks and accelerator designs. Current
benchmarks and characterizations for DNNs primarily focus
on FC, CNNs, and RNNs [20], [31]–[35]. Building upon the
performance bottlenecks derived from these studies, a variety
of hardware solutions have been proposed to optimize for
traditional DNNs [36]–[59]. While these DNNs share the oper-
ators introduced in Section V, recommendation models present
them in unique ratios and model architecture organizations.

VIII. CONCLUSION

It is important to characterize deep recommendation models
across different layers in the execution stack because this
helps us better understand the bottlenecks that arise from our
evaluations. By understanding more about these bottlenecks
and how they realize themselves at different levels (i.e., as
operators in Caffe2 and as inefficiencies of different CPU
components), we can intelligently design future hardware that
optimizes for deep recommendation inference.

IX. ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers for
their thoughtful comments and suggestions. We would also
like to thank Glenn Holloway and Emma Wang for their
valuable feedback. This work was sponsored in part by NSF
CCF-1533737 and a National Science Foundation Graduate
Research Fellowship (NSFGRFP).

REFERENCES

[1] G. Linden, B. Smith, and J. York, “Amazon.com recommendations: item-
to-item collaborative filtering,” IEEE Internet Computing, vol. 7, no. 1,
pp. 76–80, 2003.

[2] G. Zhou, X. Zhu, C. Song, Y. Fan, H. Zhu, X. Ma, Y. Yan, J. Jin, H. Li,
and K. Gai, “Deep interest network for click-through rate prediction,”
in Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining. ACM, 2018, pp. 1059–1068.

[3] G. Zhou, N. Mou, Y. Fan, Q. Pi, W. Bian, C. Zhou, X. Zhu, and K. Gai,
“Deep interest evolution network for click-through rate prediction,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33,
2019, pp. 5941–5948.

[4] M. Naumov, D. Mudigere, H. M. Shi, J. Huang, N. Sundaraman,
J. Park, X. Wang, U. Gupta, C. Wu, A. G. Azzolini, D. Dzhulgakov,
A. Mallevich, I. Cherniavskii, Y. Lu, R. Krishnamoorthi, A. Yu,
V. Kondratenko, S. Pereira, X. Chen, W. Chen, V. Rao,
B. Jia, L. Xiong, and M. Smelyanskiy, “Deep learning
recommendation model for personalization and recommendation
systems,” CoRR, vol. abs/1906.00091, 2019. [Online]. Available:
http://arxiv.org/abs/1906.00091

[5] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua, “Neural
collaborative filtering,” in Proceedings of the 26th International
Conference on World Wide Web, ser. WWW ’17. Republic and
Canton of Geneva, Switzerland: International World Wide Web
Conferences Steering Committee, 2017, pp. 173–182. [Online].
Available: https://doi.org/10.1145/3038912.3052569

[6] Z. Zhao, L. Hong, L. Wei, J. Chen, A. Nath, S. Andrews, A. Kumthekar,
M. Sathiamoorthy, X. Yi, and E. Chi, “Recommending what video
to watch next: A multitask ranking system,” in Proceedings of the
13th ACM Conference on Recommender Systems, ser. RecSys ’19.
New York, NY, USA: ACM, 2019, pp. 43–51. [Online]. Available:
http://doi.acm.org/10.1145/3298689.3346997

[7] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Item-based collabo-
rative filtering recommendation algorithms,” in Proceedings of the 10th
International Conference on World Wide Web, ser. WWW ’01. ACM,
2001, pp. 285–295.

[8] “Netflix update: Try this at home,” https://sifter.org/ si-
mon/journal/20061211.html.

[9] K. Hazelwood, S. Bird, D. Brooks, S. Chintala, U. Diril, D. Dzhulgakov,
M. Fawzy, B. Jia, Y. Jia, A. Kalro, J. Law, K. Lee, J. Lu, P. Noordhuis,
M. Smelyanskiy, L. Xiong, and X. Wang, “Applied machine learning
at facebook: A datacenter infrastructure perspective,” in 2018 IEEE
International Symposium on High Performance Computer Architecture
(HPCA), Feb 2018, pp. 620–629.

[10] U. Gupta, C. Wu, X. Wang, M. Naumov, B. Reagen, D. Brooks,
B. Cottel, K. M. Hazelwood, M. Hempstead, B. Jia, H. S.
Lee, A. Malevich, D. Mudigere, M. Smelyanskiy, L. Xiong, and
X. Zhang, “The architectural implications of facebook’s dnn-based
personalized recommendation,” in IEEE International Symposium on
High Performance Computer Architecture, HPCA 2020, San Diego,
CA, USA, February 22-26, 2020. IEEE, 2020, pp. 488–501. [Online].
Available: https://doi.org/10.1109/HPCA47549.2020.00047

[11] M. Naumov, J. Kim, D. Mudigere, S. Sridharan, X. Wang, W. Zhao,
S. Yilmaz, C. Kim, H. Yuen, M. Ozdal, K. Nair, I. Gao, B.-Y. Su,
J. Yang, and M. Smelyanskiy, “Deep learning training in facebook data
centers: Design of scale-up and scale-out systems,” 2020.

[12] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers et al., “In-datacenter
performance analysis of a tensor processing unit,” in 2017 ACM/IEEE
44th Annual International Symposium on Computer Architecture (ISCA).
IEEE, 2017, pp. 1–12.

[13] M. Chui, J. Manyika, M. Miremadi, N. Henke, R. Chung, P. Nel, and
S. Malhotra, “Notes from the ai frontier insights from hundreds of use
cases,” 2018.

[14] W. Zhao, J. Zhang, D. Xie, Y. Qian, R. Jia, and P. Li, “Aibox: Ctr
prediction model training on a single node,” in Proceedings of the
28th ACM International Conference on Information and Knowledge
Management, ser. CIKM ’19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 319–328. [Online]. Available:
https://doi.org/10.1145/3357384.3358045

[15] U. Gupta, S. Hsia, V. Saraph, X. Wang, B. Reagen, G.-Y. Wei, H.-H. S.
Lee, D. Brooks, and C.-J. Wu, “Deeprecsys: A system for optimizing
end-to-end at-scale neural recommendation inference,” 2020.

[16] Y. Kwon, Y. Lee, and M. Rhu, “Tensordimm: A practical near-memory
processing architecture for embeddings and tensor operations in deep
learning,” in Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture, ser. MICRO ’52. New York, NY,
USA: Association for Computing Machinery, 2019, p. 740–753.
[Online]. Available: https://doi.org/10.1145/3352460.3358284

[17] L. Ke, U. Gupta, C.-J. Wu, B. Y. Cho, M. Hempstead, B. Reagen,
X. Zhang, D. Brooks, V. Chandra, U. Diril, A. Firoozshahian, K. Hazel-
wood, B. Jia, H.-H. S. Lee, M. Li, B. Maher, D. Mudigere, M. Naumov,
M. Schatz, M. Smelyanskiy, and X. Wang, “Recnmp: Accelerating
personalized recommendation with near-memory processing,” 2019.

[18] R. Hwang, T. Kim, Y. Kwon, and M. Rhu, “Centaur: A chiplet-based,
hybrid sparse-dense accelerator for personalized recommendations,”
2020.

[19] S. Zhang, L. Yao, A. Sun, and Y. Tay, “Deep learning based
recommender system: A survey and new perspectives,” ACM
Comput. Surv., vol. 52, no. 1, Feb. 2019. [Online]. Available:
https://doi.org/10.1145/3285029

[20] C.-J. Wu, R. Burke, E. H. Chi, J. Konstan, J. McAuley, Y. Raimond,
and H. Zhang, “Developing a recommendation benchmark for mlperf
training and inference,” 2020.

[21] A. Yasin, “A top-down method for performance analysis and counters
architecture,” in 2014 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), 2014, pp. 35–44.

[22] U. Gupta, X. Wang, M. Naumov, C.-J. Wu, B. Reagen, D. Brooks,
B. Cottel, K. Hazelwood, B. Jia, H.-H. S. Lee et al., “The architectural
implications of facebook’s dnn-based personalized recommendation,”
arXiv preprint arXiv:1906.03109, 2019.

[23] H.-T. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Aradhye,
G. Anderson, G. Corrado, W. Chai, M. Ispir et al., “Wide & deep
learning for recommender systems,” in Proceedings of the 1st workshop
on deep learning for recommender systems. ACM, 2016, pp. 7–10.



[24] S. Kanev, J. P. Darago, K. Hazelwood, P. Ranganathan, T. Moseley,
G.-Y. Wei, and D. Brooks, “Profiling a warehouse-scale computer,” in
Proceedings of the 42nd Annual International Symposium on Computer
Architecture, ser. ISCA ’15. New York, NY, USA: Association
for Computing Machinery, 2015, p. 158–169. [Online]. Available:
https://doi.org/10.1145/2749469.2750392

[25] A. Sriraman, A. Dhanotia, and T. F. Wenisch, “Softsku: Optimiz-
ing server architectures for microservice diversity @scale,” in 2019
ACM/IEEE 46th Annual International Symposium on Computer Archi-
tecture (ISCA), 2019, pp. 513–526.

[26] Intel, “Intel® 64 and ia-32 architectures optimization reference manual,”
2020.

[27] A. Fog, “The microarchitecture of intel, amd and via cpus: An optimiza-
tion guide for assembly programmers and compiler makers,” 2020. [On-
line]. Available: https://www.agner.org/optimize/microarchitecture.pdf

[28] A. Ginart, M. Naumov, D. Mudigere, J. Yang, and J. Zou, “Mixed dimen-
sion embeddings with application to memory-efficient recommendation
systems,” arXiv preprint arXiv:1909.11810, 2019.

[29] H.-J. M. Shi, D. Mudigere, M. Naumov, and J. Yang, “Compositional
embeddings using complementary partitions for memory-efficient rec-
ommendation systems,” arXiv preprint arXiv:1909.02107, 2019.

[30] D. Kalamkar, E. Georganas, S. Srinivasan, J. Chen, M. Shiryaev, and
A. Heinecke, “Optimizing deep learning recommender systems’ training
on cpu cluster architectures,” 2020.

[31] Robert Adolf, Saketh Rama, Brandon Reagen, Gu-Yeon
Wei, and David Brooks, “Fathom: Reference workloads
for modern deep learning methods,” ser. IISWC’16,
2016. [Online]. Available: http://vlsiarch.eecs.harvard.edu/wp-
content/uploads/2016/08/iiswc2016-final.pdf

[32] E. Wang, G.-Y. Wei, and D. Brooks, “Benchmarking tpu, gpu, and cpu
platforms for deep learning,” arXiv preprint arXiv:1907.10701, 2019.

[33] C. Coleman, D. Narayanan, D. Kang, T. Zhao, J. Zhang, L. Nardi,
P. Bailis, K. Olukotun, C. Ré, and M. Zaharia, “Dawnbench: An end-
to-end deep learning benchmark and competition.”

[34] H. Zhu, M. Akrout, B. Zheng, A. Pelegris, A. Jayarajan, A. Phanishayee,
B. Schroeder, and G. Pekhimenko, “Benchmarking and analyzing deep
neural network training,” in Proceedings of the IEEE International
Symposium on Workload Characterization (IISWC). IEEE, 2018, pp.
88–100.

[35] “A broad ml benchmark suite for measuring performance of ml soft-
ware frameworks, ml hardware accelerators, and ml cloud platforms,”
https://mlperf.org/, 2019.

[36] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan,
B. Khailany, J. S. Emer, S. W. Keckler, and W. J. Dally,
“SCNN: an accelerator for compressed-sparse convolutional neural
networks,” CoRR, vol. abs/1708.04485, 2017. [Online]. Available:
http://arxiv.org/abs/1708.04485

[37] M. Rhu, N. Gimelshein, J. Clemons, A. Zulfiqar, and S. W. Keckler,
“vdnn: Virtualized deep neural networks for scalable, memory-efficient
neural network design,” in The 49th Annual IEEE/ACM International
Symposium on Microarchitecture. IEEE Press, 2016, p. 18.

[38] Y. Kwon and M. Rhu, “Beyond the memory wall: A case for memory-
centric hpc system for deep learning,” in 2018 51st Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). IEEE, 2018,
pp. 148–161.

[39] Y. Choi and M. Rhu, “Prema: A predictive multi-task scheduling
algorithm for preemptible neural processing units,” arXiv preprint
arXiv:1909.04548, 2019.

[40] Udit Gupta, Brandon Reagen, Lillian Pentecost, Marco Donato, Thierry
Tambe, Alexander M. Rush, Gu-Yeon Wei, David Brooks, “MASR: A
modular accelerator for sparse rnns,” in International Conference on
Parallel Architectures and Compilation Techniques, 2019.

[41] Y.-H. Chen, T. Krishna, J. Emer, and V. Sze, “Eyeriss: An Energy-
Efficient Reconfigurable Accelerator for Deep Convolutional Neural
Networks,” in ISSCC, 2016.

[42] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and
W. J. Dally, “EIE: efficient inference engine on compressed deep
neural network,” CoRR, vol. abs/1602.01528, 2016. [Online]. Available:
http://arxiv.org/abs/1602.01528

[43] B. Reagen, P. Whatmough, R. Adolf, S. Rama, H. Lee, S. K. Lee, J. M.
Hernandez-Lobato, G.-Y. Wei, and D. Brooks, “Minerva: Enabling Low-
Power, Highly-Accurate Deep Neural Network Accelerators,” in ISCA,
2016.

[44] F. Silfa, G. Dot, J.-M. Arnau, and A. Gonzàlez, “E-pur: An energy-
efficient processing unit for recurrent neural networks,” in Proceedings
of the 27th International Conference on Parallel Architectures and
Compilation Techniques, ser. PACT ’18. ACM, 2018, pp. 18:1–18:12.

[45] K. Hegde, R. Agrawal, Y. Yao, and C. W. Fletcher, “Morph: Flexible
acceleration for 3d cnn-based video understanding,” in 2018 51st Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO),
Oct 2018, pp. 933–946.

[46] K. Hegde, H. Asghari-Moghaddam, M. Pellauer, N. Crago, A. Jaleel,
E. Solomonik, J. Emer, and C. W. Fletcher, “Extensor: An accelerator for
sparse tensor algebra,” in Proceedings of the 52Nd Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO ’52. ACM,
2019, pp. 319–333.

[47] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen,
Z. Xu, N. Sun, and O. Teman, “Dadiannao: A machine-learning super-
computer,” in MICRO, 2014.

[48] S. Zhang, Z. Du, L. Zhang, H. Lan, S. Liu, L. Li, Q. Guo, T. Chen, and
Y. Chen, “Cambricon-X: An accelerator for sparse neural networks,” in
49th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), Oct 2016, pp. 1–12.

[49] H. Sharma, J. Park, E. Amaro, B. Thwaites, P. Kotha, A. Gupta, J. K.
Kim, A. Mishra, and H. Esmaeilzadeh, “Dnnweaver: From high-level
deep network models to fpga acceleration.”

[50] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng, Y. Chen,
and O. Temam, “Shidiannao: Shifting vision processing closer to the
sensor,” in ACM SIGARCH Computer Architecture News, vol. 43, no. 3.
ACM, 2015, pp. 92–104.

[51] D. Liu, T. Chen, S. Liu, J. Zhou, S. Zhou, O. Teman, X. Feng, X. Zhou,
and Y. Chen, “Pudiannao: A polyvalent machine learning accelerator,”
in ACM SIGARCH Computer Architecture News, vol. 43, no. 1. ACM,
2015, pp. 369–381.

[52] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and
Y. Xie, “Prime: A novel processing-in-memory architecture for neural
network computation in reram-based main memory,” in ACM SIGARCH
Computer Architecture News, vol. 44, no. 3. IEEE Press, 2016, pp. 27–
39.

[53] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Stra-
chan, M. Hu, R. S. Williams, and V. Srikumar, “Isaac: A convolutional
neural network accelerator with in-situ analog arithmetic in crossbars,”
ACM SIGARCH Computer Architecture News, vol. 44, no. 3, pp. 14–26,
2016.

[54] D. Kim, J. Kung, S. Chai, S. Yalamanchili, and S. Mukhopadhyay,
“Neurocube: A programmable digital neuromorphic architecture with
high-density 3d memory,” in 2016 ACM/IEEE 43rd Annual International
Symposium on Computer Architecture (ISCA). IEEE, 2016, pp. 380–
392.

[55] R. LiKamWa, Y. Hou, J. Gao, M. Polansky, and L. Zhong, “Redeye:
analog convnet image sensor architecture for continuous mobile vision,”
in ACM SIGARCH Computer Architecture News, vol. 44, no. 3. IEEE
Press, 2016, pp. 255–266.

[56] D. Mahajan, J. Park, E. Amaro, H. Sharma, A. Yazdanbakhsh, J. K.
Kim, and H. Esmaeilzadeh, “Tabla: A unified template-based framework
for accelerating statistical machine learning,” in 2016 IEEE Interna-
tional Symposium on High Performance Computer Architecture (HPCA).
IEEE, 2016, pp. 14–26.

[57] M. Gao, J. Pu, X. Yang, M. Horowitz, and C. Kozyrakis, “Tetris:
Scalable and efficient neural network acceleration with 3d memory,”
in ACM SIGARCH Computer Architecture News, vol. 45, no. 1. ACM,
2017, pp. 751–764.

[58] L. Pentecost, M. Donato, B. Reagen, U. Gupta, S. Ma, G.-
Y. Wei, and D. Brooks, “Maxnvm: Maximizing dnn storage
density and inference efficiency with sparse encoding and error
mitigation,” in Proceedings of the 52Nd Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO ’52.
New York, NY, USA: ACM, 2019, pp. 769–781. [Online]. Available:
http://doi.acm.org/10.1145/3352460.3358258

[59] J. Albericio, A. Delmás, P. Judd, S. Sharify, G. O’Leary, R. Genov,
and A. Moshovos, “Bit-pragmatic deep neural network computing,” in
Proceedings of the 50th Annual IEEE/ACM International Symposium on
Microarchitecture. ACM, 2017, pp. 382–394.


